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Abstract

A long-term trend in high-performance computing is the increasing number of nodes in parallel computing platforms, which entails a higher
failure probability. Fault tolerant programming environments should be used to guarantee the safe execution of critical applications. Research
in fault tolerant MPIs has led to the development of several fault tolerant MPI environments. Different approaches are being proposed using a
variety of fault tolerant message passing protocols based on coordinated checkpointing or message logging. The most popular approach is with
coordinated checkpointing. In the literature, two different concepts of coordinated checkpointing have been proposed: blocking and non-blocking.
However they have never been compared quantitatively, and their respective scalabilities remain unknown. The contribution of this paper is to
provide the first comparison between these two approaches and a study of their scalabilities. We have implemented the two approaches within the
MPICH environments and evaluate their performance using the NAS parallel benchmarks.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A long-trend in high-performance computing systems is
the increase of the number of nodes. This is illustrated
by the composition of the Top500 supercomputer list. The
average number of processors per machine in the top 500
supercomputers is currently greater than 1000. Moreover, more
than three quarter of these supercomputers have between 257
and 1024 processors, and the three most powerful systems have
more than 10 000 processors. As the number of processors
increases, the probability of failure inside the whole system
also increases [1]. So fault-tolerance becomes a key property
for parallel applications running on these systems.

The concept of grids has emerged recently, consisting of
gathering resources of different parallel computers (clusters
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or constellations), often increasing the system size to
thousands of processors (TeraGrid, EGEE, Grid’5000, DEISA,
NAREGI, etc.). These Grids span multiple domains, which
are often administrated with different active policies. Because
of the system and administrative complexities, it becomes
cumbersome for the users to manage failures occurring during
application execution. Thus, it is essential to provide a certain
level of automation to allow applications to run until completion
when failures occur during execution.

The Message Passing Interface (MPI) is currently the
programming paradigm and communication library most
commonly used on supercomputers. Thanks to its high
availability on parallel machines from low cost clusters to
clusters of vector multiprocessors, it allows the same code to
run on different kinds of architectures. Moreover, it also allows
the same code to run on different generations of machines,
ensuring a long lifetime for the code. MPI conforms to popular
high-performance message passing programming styles. Even
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if many applications follow the SPMD programming paradigm,
MPI is also used for master-worker execution, where MPI
nodes play different roles. For these reasons, MPI is
the preferred programming environment for many high-
performance applications. MPI, in its specification [2] and most
deployed implementations, (MPICH [3]) follows the fail stop
semantic (specification and implementations do not provide
mechanisms for fault detection and recovery). Thus, MPI
applications may be stopped at any time during their execution
due to an unpredictable failure.

In order to avoid complete restarts of an MPI application
due to only one failure, a fault tolerant MPI implementation
is essential. The typical fault tolerant technique implemented
in an MPI library is coordinated checkpointing [4,5]. This
technique consists of regularly taking a global state of the
system and, if a failure occurs, restarting this application from
this global state. There are two main ways to implement
this technique. The first one, called blocking coordinated
checkpointing, consists of stopping the MPI computation to
take the global state. This permits better control on the state of
the different processes and their communication channels. The
second one, called non-blocking coordinated checkpointing,
does not provide this kind of control, but does not require the
interruption of the MPI computation.

The blocking solution is simple to implement in a high-
performance driver, because it requires few modifications
in the low-level communication layer. The non-blocking
solution, even if it does not stop the computation, can require
modifications that introduce overheads in the driver. As the
number of processes regularly increases, it is important to
evaluate the impact of these kinds of fault tolerant protocols
on large-scale MPI computations. In this paper, we compare
these two protocols, blocking and non-blocking, and evaluate
their respective impacts on large-scale applications. We detail
the implementation of the blocking protocol inside MPICH2,
and compare it with our previous non-blocking implementation
MPICH-Vcl [6] and evaluate its impact on overall performance.

The paper is organized as follows. Section 2 presents
the related works highlighting the originality of this work.
Section 3 presents the common principle of the global
checkpointing protocols, and then the blocking and non-
blocking solutions. Section 4 presents the implementations used
to compare these two fault tolerant MPI protocols in a fair
way. Section 5 presents the experimental results in terms of
application performance and fault tolerance using the NAS
benchmarks. Section 6 sums up what we learned from these
experiments.

2. Related works

MPI is a standard for message-passing systems widely
used for parallel applications. Several implementations of this
standard are available, among them two main open-source
projects: MPICH [3] and OpenMPI [7].

Fault tolerance in MPI applications can be implemented fol-
lowing three strategies: explicit (managed by the programmer),
semi-automatic (guided by the programmer), and automatic
(transparent to the programmer/user). In this paper we focus on
the last strategy, one that achieves fault tolerance without any
intervention from the programmer.

Several techniques are used to implement fault tolerance in
high-performance computing. Simple replication is not relevant
for such systems, since if the system is designed to tolerate
n faults, every component must be replicated n times and the
computation resources are thus divided by n.

Message-logging is based on the Piecewise Deterministic
Assumption, according to which execution of a process
is a sequence of deterministic events separated by non-
deterministic ones (generally the reception events) [8]. As a
consequence, replaying the same sequence of non-deterministic
events at the same moment makes possible the recovery of
the state preceding a failure. Therefore, there is no need
to coordinate the checkpoints of the different processes,
since each one can checkpoint its state independently from
the other ones. The recovery mechanism is more complex
than with coordinated checkpoints, as a process must obtain
its past events and be able to replay them. Moreover, the
overhead induced during failure-free execution decreases the
performance in reliable environments, such as clusters [6].

Coordinated checkpointing has been introduced by Chandy
and Lamport [9]. This technique requires that at least one
process send a marker to notify the other ones to take a snapshot
of their local states and then form a global checkpoint. The
global state obtained from a coordinated checkpoint is coherent,
allowing the system to recover from the last full completed
checkpoint wave. It does not generate any orphan processes,
nor domino effects, but all the compute nodes must rollback to
a previous state in case of any failure. The recovery process is
straightforward, and simple garbage collection reduces the size
needed to store the checkpoints.

In blocking coordinated checkpointing protocols, the
processes stop their execution to perform the checkpoint, save
it on a reliable storage support (that can be remote), send an
acknowledgment to the checkpoint initiator and wait for its
commit. They continue the execution only when they have
received this commit. The initiator sends the commit only when
it has received all the acknowledgments from all the computing
nodes to make sure that the global state that has been saved
is fully completed. As reported in [10], blocking checkpoints
cause significant latency, and non-blocking checkpoints are
more efficient.

Non-blocking coordinated checkpoints with distributed
snapshots consist of taking checkpoints when a marker is
received. This marker can be received from a centralized entity
that initiates the checkpoint wave, or from another compute
node which has itself received the marker and transmits the
checkpoint signal to the other nodes. This algorithm assumes
that all the communication channels comply with the FIFO
property. Therefore the computational processes do not have to
wait for the other ones to finish their checkpoint, and then the
delay induced by the checkpoint corresponds only to the local
checkpointing.
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Fig. 1. A Vcl execution.
Several MPI libraries are fault tolerant [11]. Coordinated
checkpointing has been implemented in several MPI implemen-
tations at different levels of the application.

LAM/MPI [5,12] implements the Chandy–Lamport
algorithm for a system-initiated global checkpointing. The syn-
chronization is performed at the network level by the commu-
nication protocol.

3. Protocols

In this paper, we compare two global checkpointing
protocols. These are rollback recovery protocols. To perform
this rollback recovery, they regularly take a snapshot of the local
states of every process of the system, such that when a failure
occurs, all processes are rolled back to their most recently
stored state. In order to ensure the global checkpoint coherence
resulting from the collection of the different local states, these
two protocols rely on the Chandy and Lamport algorithm [9]. In
this algorithm, one or more processes can initiate a checkpoint
wave. When a process starts a checkpoint, it records its local
state and sends a marker to all its neighbours. When a process
receives a marker, if it has not started its checkpoint wave yet, it
starts it. Every message a process receives after it has started its
checkpoint wave and before having received the marker of the
sender is recorded in the receiver image as the channel’s state.

The first protocol we consider in this paper, called Vcl, is
a direct implementation of the Chandy and Lamport algorithm
for MPI computations. An MPI process consists of two Unix
processes: a computation process (MPI) and a communication
process (daemon). The communication process is used to
store in-transit messages and to replay these messages when
a restart is performed. Moreover, we added a process, the
checkpoint scheduler, which is the only one that can initiate
a checkpoint wave. Furthermore, specific processes, called
checkpoint servers are used to store the local images of
all processes. Finally, we define a dispatcher for launching
the different processes in the system, detecting failures and
restarting the failed application.

The protocol works as shown in Fig. 1. The MPI process 1
initially receives the marker from the checkpoint scheduler (1),
stores its local state (2), and sends a marker to every process (3).
From this point, every message, like m in the figure, received
after the local checkpoint and before having received the marker
of the sender, is stored by the daemon process. When the MPI
process 0 receives the marker, it starts its local checkpoint and
sends a marker to every other process (3). The reception of this
marker by 1 concludes the local checkpoint of 1. If a failure
occurs, all processes restart from their last stored checkpoint
(4), and the daemon process replays the delivery of the stored
messages (5). Note that the message m′ may be not sent again
in the new execution.

The second protocol, which we call Pcl, is used in other
implementations [12]. This protocol consists in synchronizing
the different processes for emptying the communication layer.
Thus, during the checkpoint wave, no messages are being
exchanged, so there is no need to store the channel state in any
way. When the system is restarted after a failure, every process
reloads its last local image and reinitializes the communication
layer for establishing a connection; then the computation can
continue.

Fig. 2 illustrates this protocol. The synchronization is
performed by marker exchanges to flush all channels. In Pcl,
a global checkpoint is made by following this sequence of
actions. The MPI process of rank 0 regularly starts a new
checkpoint wave and changes its state to checkpointing,
then sends markers to every other process (1). When a process
receives the first marker, it changes its state to checkpointing
and sends markers to every other process (2). After having sent
a marker, a process does not send any other message through
the same channel until it takes its checkpoint (segment 3). Such
messages, still in the process memory, are automatically stored
in the checkpoint. Similarly, after having received a marker,
a process does not receive any other message from the same
channel: message receptions are delayed up until the end of the
checkpoint of the process (green segment 4). When a process
has received the marker of every other process, it checkpoints
and sends the resulting image to the checkpoint server (5). After
having taken its checkpoint, a process can send and receive
any messages. When the images are completely stored, the
process sends a message to rank 0 to notify it about the end
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Fig. 2. A Pcl execution.
of its checkpoint and continues its execution. Finally the rank
0 MPI process acknowledges the different checkpoint servers
about the coherence of the wave after having received every
confirmation of the end of the checkpoint from every process.
If a failure occurs, all processes restart from their last stored
checkpoint (6) and every message delayed in emission will be
sent again after the restart (7).

4. Implementation details

MPICH is a prominent project developed at the Argonne
National Laboratory. It aims at providing a high-performance
MPI library implementation. The first major revision, called
MPICH, addresses the MPI-1 specification. The latest major
revision, called MPICH2, extends the performance of the first
one and addresses the new specifications of MPI-2. In this
section we present the details of the integration of the global
checkpointing mechanism inside these two major versions.

4.1. Non-blocking checkpointing implementation inside
MPICH

A fundamental abstraction used by MPICH to implement
the MPI standard is the notion of a device. Such a device
implements the basic communication routines for specific
hardware or for new communication protocols. We developed
a generic framework, called MPICH-V [4,6], to compare
different fault tolerance protocols for MPI applications. This
framework implements a device for the MPICH 1.2.7 library,
based on the ch p4 default device.

MPICH-V (see Fig. 3) is composed of a set of runtime
components and a device called ch v. This device relies on
a separation between the MPI application and the actual
communication system. Communication daemons (Vdaemon)
provide all communication routines between the different
components involved in MPICH-V. The fault tolerance is
performed by implementing hooks in relevant communication
routines. This set of hooks is called a V-protocol. The two
main V-protocols of interest in this paper are Vcl and Vdummy.
Vdummy is a minimalist implementation of a non-fault-
tolerant protocol using the MPICH-V architecture. Vdummy
is used to measure the performance of the ch v device and
its communication daemon. Vcl implements the Chandy and
Lamport algorithm (cf. Section 3).
Daemon. A daemon manages the communication between
nodes, namely sending, receiving, reordering and establishing
connections. It opens one TCP socket per MPI process and one
per server type (a dispatcher and a checkpoint server for the
Vcl implementation). It is implemented as a single-threaded
process that multiplexes communications through select calls.
To limit the number of system calls, all communications are
packed using iovec techniques. The communication with the
local MPI process is done using blocking send and receive on a
Unix socket.
Dispatcher. The dispatcher is responsible for starting the MPI
application. Firstly it starts the servers, then the MPI processes
using ssh command. The dispatcher is also responsible for
detecting failures and restarting nodes. A failure is assumed
after any unexpected socket closure.

The dispatcher is responsible for starting the MPI
application. It starts the different processes and servers first,
then the MPI processes, using ssh to launch remote processes.
The dispatcher is also responsible for detecting failures and
restarting nodes. A failure is assumed after any unexpected
socket closure. Then, the dispatcher signals all the other
processes to exit, removes the non-responding machines from
the list of available processors and launches the restarting
application in the rest of the processors. This may lead to
overloading of some processors, or the running of more than
one process on a single processor. In order to address this issue,
one has to overbook processors to have available spare nodes.

Failure detection relies on the OS TCP keep-alive
parameters. In this work, we emulated failures by killing
the task, not the operating system, so failure detection was
immediate, and the TCP connection was broken as soon as the
task was killed by the operating system.
Checkpoint server and checkpoint mechanism. The two imple-
mentations use the same abstract checkpointing mechanism.
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(a) MPICH-V architecture. (b) Typical deployment of MPICH-Vcl environment.

Fig. 3. MPICH-V architecture and typical deployment.
This mechanism provides a unified API to address three system-
level task checkpointing libraries, namely Condor Standalone
Checkpointing Library [13], libckpt [14] and the Berkeley
Linux Checkpoint/Restart [15,12]. All these libraries allow the
user to take a Unix process image in order to store it on a disk
and to restart this process on the same architecture. By default,
BLCR, which is the most up-to-date library, is used.

The technique used (system-level checkpointing) saves
the whole process image, i.e. its memory map, kernel state
and process registers. So the size of the checkpoint images
is directly proportional to the memory allocated, and few
optimizations can be used to reduce this size.

The checkpoint servers are responsible for collecting local
checkpoints of all MPI processes. When an MPI process starts
a checkpoint, it duplicates its state by calling the fork system
call. The forked process calls the checkpoint library to create
the checkpoint file while the initial MPI process can continue
the computation. The daemon associated with the MPI process
connects to the checkpoint server that first creates a new process
responsible for managing the checkpoint of this MPI process.
Then three new connections are established (data, messages
and control) between the daemon and the server. The clone
of the MPI process writes its local checkpoint to a file, and
the daemon pipelines the reading and the sending of this file
to the checkpoint server using the data connection. When the
checkpoint file has been completely sent, the clone of the MPI
process terminates and the daemon closes the data connection;
then it sends the total file size using the control connection.
Every message to be logged, according to the Chandy and
Lamport algorithm, is temporarily stored in the volatile memory
of the daemon in order to be sent to the checkpoint server in the
same way using the message connection. Using this technique,
the whole computation is never interrupted during a checkpoint
phase.

If a failure occurs, all MPI processes restart from the local
checkpoint stored on the disk if it exists; otherwise they obtain
it from the checkpoint server.

Checkpoint scheduler. The goal of checkpoint scheduler is to
manage the checkpoint waves. It regularly (parameter defined
by the user) sends markers to every MPI process. Before
asserting the end of the global checkpoint to the checkpoint
servers, the scheduler waits for an acknowledgment of the end
of the checkpoint from every MPI process.

4.2. Blocking checkpointing implementation inside MPICH2

MPICH2 is a new implementation of the MPI standard,
which extends results obtained in MPICH and addresses the
issue of the MPI2’s new functionalities. MPICH2 is structured
in three layers: (1) the abstract device interface (ADI3) which
links the MPI standard to an extended set of high-level
communication routines, (2) the CH3 device which abstracts
the ADI3 routines to an API composed of a few (ten to twenty)
communication routines, and (3) a channel which implements
this CH3 API depending on the specific network hardware or
communication protocol.

We introduce in this paper a new implementation of a
blocking checkpointing mechanism for fault tolerance inside
MPICH2 called MPICH2-Pcl (see Fig. 4). This implementation
consists of a new channel, called ft-sock, based on the TCP
sock channel, and two components, i.e., a checkpoint server
and a specific dispatcher. We also implemented the blocking
checkpointing mechanism in the Nemesis channel [16] to allow
us to use high-performance networks.

Ft-sock channel. The ft-sock channel is a derivation of the
existing sock implementation. It consists of a basic set of
communication routines using a poll mechanism to multiplex
I/O and iovec to reduce the number of system calls. The core of
CH3 interface’s communication system is based on sequences
of request-to-sends and request-to-receives for each MPI peer.
Sending or receiving messages consists of posting such requests
to the sock channel.

To implement the blocking checkpointing mechanism, the
main modifications involve adding a hook in the request posting
function for verifying and delaying these posts if a checkpoint
wave is currently active. The exchange of markers used in the
protocol (cf. Section 3) is done by using the communication
primitive defined in sock and adding a new type of packet.

By contrast to MPICH-Vcl, there is not a specific checkpoint
scheduler server to start checkpoint waves. This role is now
dedicated to the MPI process of rank 0.
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(a) MPICH2-Pcl architecture. (b) Typical deployment of MPICH2-Pcl environment.

Fig. 4. MPICH2-Pcl architecture and typical deployment.
Nemesis channel. The Nemesis is an existing channel that
uses shared-memory for intranode communication and high-
performance networks for inter-node communication. The fact
that Nemesis has a single queue for send requests makes it
relatively simple to block sends once the marker messages
have been sent. This is done by enqueuing a special stopper
request on the single send queue, which prevents subsequent
send requests from being sent. In order to resume sending
messages, the stopper request is dequeued from the send queue
and discarded, allowing subsequent messages to be sent.

In the Pcl protocol, packets from a particular process must
be blocked once a marker message has been received from that
process until the checkpoint has been taken. Because Nemesis
has a single receive queue, which may contain packets from any
process, it is more difficult to block the reception of packets
from a particular process. When a packet is received from a
blocked process, the packet is copied into a delayed receive
queue. Then, after the checkpoint has been taken and messages
can be received from any process, the packets in the delayed
receive queue are handled before we receive new packets from
the receive queue. Upon restarting from a checkpoint, the
process discards any packets in the delayed receive queue.

When the process forks before taking a checkpoint image,
the lower-level communication mechanism is shut down. In
this shutdown, the shared-memory regions are unmapped and
any network interfaces are closed. User-level networks typically
map a region of memory from the network interface controller
directly into the process’s address space, through which the
process communicates with the NIC. When the process forks,
both the child and parent processes have mappings to the same
region. Therefore, care must be taken when shutting down the
network interface in the child so that the network interface is not
also closed for the parent. For the GM communication library
using Myrinet, we had to access GM’s internal structures to free
memory associated with the interface and unmap the memory
region to the NIC, without sending close commands that would
normally be sent to the NIC when closing the interface.

Checkpoint implementation details. The same checkpoint
server as in MPICH-V is used to store MPICH2-Pcl checkpoint
images. As explained in Section 3, a process starts taking its
image only after it receives and sends all its markers. At this
time, the process forks to create its checkpoint file in the same
way as in MPICH-Vcl, while the main process releases the
delayed requests and continues the MPI computation. When the
clone ends the checkpoint, the SIGCHLD signal is delivered to
the main process that sends a message to the MPI process of
rank 0 such that a new checkpoint wave can be scheduled.

Runtime: MPD and FTPM. MPICH2 introduces a new process
management environment called MPD, which runs a persistent
daemon on every node of the system for launching MPI jobs.
All these daemons are connected in a ring topology. This avoids
the use of sequential ssh commands to start a job. When a job
is launched on n nodes, the n MPDs fork to create process
managers (PMs). Then the process managers fork to execute n
MPI processes. The different MPI processes are not connected
together at the start of the execution. Two MPI processes
connect themselves only from the first communication request
between them. The role of PM is to provide information
about the different nodes’ locations. In the current MPICH2
implementation, the MPD is known to be fault tolerant, but the
process manager is not. When a failure occurs, all the PMs and
the MPI processes of the job are killed.

Our implementations of fault tolerant protocols include
checkpoint servers. The current MPD implementation does
not allow their direct use. Rather than modifying the MPD
environment, we implement a simpler environment, which we
call a fault tolerant process manager (FTPM). This environment
does not contain MPD daemons and it is used to start, to
manage, to detect failures, and to restart applications. The
FTPM is composed of an mpiexec program and of a modified
version of PMs. We also modify the machinefile format in order
to add the specification of the mapping between machines used
as computing nodes and machines used as checkpoint servers.

At run time, mpiexec launches the checkpoint servers, and
then the MPI processes through the PMs. Process spawning
is done using a ssh command. To improve the execution time,
these spawns are done in parallel, and the number of concurrent
ssh connections is bounded by a parameter. For the remainder
of the execution, mpiexec has to monitor the MPI processes and
to maintain a distributed database. Node monitoring is done in
the same way as in MPICH.
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Fig. 5. Impact of the number of checkpoint servers on BT class B for 64 processes with a given period of time between checkpoints.
Each MPI process publishes its location to the others by
associating in the distributed database its rank to a business
card (composed of the process IP address, hostname and port to
connect). The database is also used to store the last successful
checkpoint wave number, and to locate which checkpoint server
holds which local checkpoint. Because at restart time MPI
processes may be assigned to spare nodes, their last local
checkpoint may be not located on the local disk or on the local
server associated with the running machine.

5. Performance measurements

In this section, we present the performance measurements
of the two implementations introduced in this paper. We
conducted the experiments on three classical platforms of
high-performance computing; namely clusters of workstations
with a Gigabit-Ethernet network, clusters connected with high-
performance communication networks, and computational
grids. We conducted all the experiments on the experimental
Grid5000 platform or some of its components.

5.1. Grid5000

Grid5000 [17] is a physical platform featuring 13 clusters,
each with between 20 and 216 PCs, connected by the Renater
French Education and Research Network. Grid5000 is a
computer science project dedicated to the study of grids, and
is funded by the French government through the ACI Grid
initiative.

At the time of writing this article, it consists of 964
computers featuring four architectures (Itanium, Xeon, G5 and
Opteron), organized as 13 clusters over 9 cities in France.

For the three platforms previously mentioned (cluster, high
speed network and grid), we used only homogeneous clusters
with 2 GHz AMD Opteron 248 dual-processors. This included
6 of the 13 clusters of Grid5000: the 48-node cluster at
Bordeaux, the 53-node cluster at Lille, the 216-node cluster
at Orsay, a 64-node cluster at Rennes, the 105-node cluster
at Sophia and the 58-node cluster at Toulouse. Moreover,
each node featured 20GB of swap and SATA hard drives.
All the cluster experiments were run on the 216-node cluster
at Orsay. Nodes were interconnected by a Gigabit-Ethernet
switch. Myrinet experiments were run on the 48-node cluster
at Bordeaux. Each node was similar to the nodes at Orsay,
interconnected by a Myrinet2000 M3-E64 with 48 ports and
PCIXD (Lanai XP) network interface controllers (NICs).

One major feature of the Grid5000 project is the ability of
the user to boot her own environment (including the operating
system, distribution, libraries, etc.) on all the computing nodes
booked for her job. We used this feature to run all our
measurements in a homogeneous environment including the
Berkeley Linux Checkpoint/Restart library. All the nodes were
booted under Linux 2.6.13.5. The tests and benchmarks are
compiled with GCC-4.0.3 (with flag -03). All tests were run in
dedicated mode, and each measurement was repeated 5 times,
and we present the mean times.

Most of the experiments were done using NAS parallel
benchmarks (NPB-2.3) [18] written by the NASA NAS
research center to test high-performance parallel machines.
These benchmarks exhibit classical communication patterns,
which are significant for the performance evaluation of
fault tolerant implementations. Checkpoints were triggered
by timeouts. In the following experiments, we used very
small values for these timeouts (tens of seconds) in order
to emphasize the impact of checkpoint frequency while
maintaining reasonable experimental times.

5.2. Gigabit-Ethernet clusters

Fig. 5 presents first a study on the scalability of checkpoint
servers. We executed the BT benchmark of class B with 64
processors (over 32 dual-processor nodes), and set a period
of time between checkpoints of 30 s. Thus, according to the
implementation, after having fully transferred a checkpoint
image to a checkpoint server, the system waits for 30 s before
beginning a new checkpoint wave. The figure consists of two
parts. In the upper part, we measure the execution time for
various ratios of the number of checkpoint servers and number
of computing nodes: from 1 server per 64 compute nodes to
1 server per 8 compute nodes. In the lower part, we present
the number of checkpoint waves completed by the system
during the corresponding executions. We ran this experiment
for the two implementations: Pcl, the blocking implementation
in MPICH2 and Vcl, the non-blocking implementation in
MPICH-1.2.

The completion time of Vcl remains almost constant,
whereas the completion time of Pcl decreases when the
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Fig. 6. Execution time as function of the number of processes for four checkpoints frequencies.
number of checkpoint servers increases. When the number
of checkpoint servers increases, the duration of checkpoint
image transfer decreases. For Pcl, this is seen clearly in the
first part of the curve as completion time decreases. In Pcl,
before a process takes a checkpoint image, it has blocked all its
communication. When it starts its checkpoint image transfer,
it simultaneously continues these communications. So, these
communications compete with the checkpoint transfer for the
network bandwidth. When the bandwidth contention decreases
(e.g. when the number of checkpoint servers increases), overall
performance increases. The timeout for the next checkpoint
wave is set as soon as every process has transferred its image.
So, increasing the number of checkpoint servers decreases the
time between two checkpoint waves. However, as seen in the
bottom half of the figure, the overall completion time decreases
enough to prevent triggering an additional checkpoint wave.

On the contrary, for Vcl, most of the time saved for
transferring the checkpoint image is used to increase the
number of checkpoint waves. Vcl does not block the
communications for the checkpoint, and less communications
compete with the checkpoint transfers. So, it has a lesser
impact on the MPI communication, and decreasing the time to
take the checkpoint still decreases the period of time between
two checkpoint waves. This introduces more checkpoint waves
without altering the near-optimal completion time. The small
difference between Pcl and Vcl for 8 checkpoint servers
illustrates the better performance of MPICH2 as compared to
MPICH-Vcl.

The four graphs of Fig. 6 present the scalability of fault
tolerance with respect to the number of processes for given
times between checkpoints. The BT class B benchmark is
run at varying sizes, for different values of time between
checkpoints, and the completion time is measured for the two
implementations and compared to a checkpoint-free execution.
All executions use the same number of checkpoint servers (9).

Without checkpoints, the two implementations behave
similarly for all the sizes. The MPICH2 implementation is
slightly more efficient for 256 processors. We can observe
that the BT class B scales up to 144 nodes. Then, for all
implementations, there is an observable slowdown at 169
processors and performances improve again afterwards. Only
150 computers were available for this test, and we used single
process deployments for up to 144 computing nodes, and bi-
processor deployments (limiting the number of computers to
128) for experiments with more than 160 computing nodes. The
gap is due to sharing the network interface controller between
the two processors.

Ignoring the graph showing the results for 10 s between
checkpoints, where the communications are heavily perturbed
by the blocking protocol, one can see that increasing the
number of nodes has no measurable impact on the overhead
of checkpointing for either of the protocols. The blocking
protocol is subject to large performance degradation when
the checkpointing frequency is high. It spends most of the
time synchronizing to make a global checkpoint. Because MPI
communications happen in bursts, as the checkpoint frequency
increases, there is a greater probability that the checkpointing
operation will interfere with MPI communication. The Vcl
implementation does not introduce the same synchronizations,



D. Buntinas et al. / Future Generation Computer Systems 24 (2008) 73–84 81
Fig. 7. Impact of the number of checkpoint waves over a high speed network.

and is therefore always closer to the executions without
checkpointing.

When the time between checkpoints increases, this gap
reduces to a constant overhead for the two checkpointing
implementations.

5.3. High-performance communication clusters

Fig. 7 shows the results of the CG class C benchmark on
64 processors run over a 32-node cluster interconnected by a
Myri2000 network. Two nodes were used as checkpoint servers,
and the computing nodes were distributed equally among the
checkpoint servers. For the two TCP implementations (PCL
– Socket and VCL), the experiments were conducted with
the MX-2G 1.1.1 driver from Myricom, enabling Ethernet
over Myri2000. The PCL – Nemesis/GM line presents the
performance of the other PCL implementation using the
Nemesis channel of MPICH2 over GM version 2.1.26. The
figure shows the completion time of the benchmark as a
function of the number of checkpoint waves during the
execution. In order to evaluate the impact of the number of
checkpoint waves, we ran the benchmark varying the timeout
values between checkpoints, and obtained the number of
checkpoint waves successfully completed from the traces.

The execution times for both Pcl implementations are
proportional to the number of checkpoint waves. This is easily
explained by the synchronizations introduced by the blocking
protocol. As explained in the cluster experiments, the number of
checkpoint waves does not directly influence the performance
of the Vcl implementation.

CG is a benchmark with a lot of small communications, and
is therefore a latency-bound benchmark. Vcl is implemented
with a communication daemon, and each message has to pass
through two UNIX sockets and the Ethernet emulation of the
Myri2000 card, resulting in unnecessary copies and a high
latency overhead. This is why Pcl performs much better than
Vcl for this benchmark.

The performance hit is even more obvious when we compare
the differences between the VCL implementation and the
Nemesis implementation of PCL. In this case, the VCL
implementation behaves better only with a checkpoint wave
every 15 s or less. This is easily explained, since VCL uses TCP
Fig. 8. Impact of the size of the system for varying number of checkpoint waves
over high speed network.

over Myrinet and adds unnecessary copies by its design through
a communication daemon. However, one has to consider that
any implementation of the non-blocking strategy will have
to copy messages, and to introduce new message queues in
the driver. Those queues will have to be polled at restart
time and take precedence over the normal message queue. So,
for high speed networks, when a performance bottleneck is
introduced in the critical path of message reception, a blocking
implementation will always perform better for low frequencies
of checkpoint waves.

Another issue of the blocking implementation is its
scalability. In the Fig. 8, we present the completion time of
many CG.C benchmarks with between 4 and 64 processes
running on the same cluster as a function of the number of
checkpoint waves. We used only the PCL implementation over
Nemesis, since it is the implementation presenting the best
performance for this cluster.

The 64- and 32-process deployments present approximately
the same performance. This is due to the fact that the CG.C
benchmark is I/O bound. Since for these deployments, one
process is running on each of the two processors in every node,
two processes must share the single NIC. We therefore see a
smaller improvement than for the other experiments, which ran
with one NIC per process.

One can see that all the curves demonstrate a slowdown
proportionate to the number of checkpoint waves. All the
benchmarks show approximately the same slope, indicating
that, up to the number of processes we measured, the impact
of taking checkpoints is not particularly sensitive to the number
of processes. While further experimentation with even larger
systems is necessary, this suggests that the PCL algorithm
scales well over high-performance networks.

5.4. Large scale experiments

The large-scale experiments are conducted on Grid5000.
Its clusters are interconnected with Internet links. In order to
evaluate the results of the benchmarks, we first measure the raw
performance of this platform using the NetPIPE [19] utility.
This is a ping-pong test for several message sizes and small
perturbations of these sizes. This test shows that the network is
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Fig. 9. Impact of checkpoint frequency on blocking checkpointing at large scale (400 processes).
up to 20 times faster between two nodes of the same cluster
than between two nodes of two distinct clusters. Moreover,
the latency is up to two orders of magnitude greater between
clusters than between nodes.

We present here results only for the Pcl implementation. The
Vcl implementation was not designed for this scale, because
it uses the select system call to multiplex its communication
channels, and this tool is not scalable beyond a thousand sockets
(in Linux, a file descriptor set has a size of at most 1024/8 B).
Each node of the Vcl implementation opens up to 3 sockets with
the dispatcher (one for alive messages and availability, two for
standard input and output), and this precludes tests with more
than 300 processes.

By contrast, Pcl was designed to scale to large platforms, and
we conducted experiments with up to 1024 processes. Due to
insufficient host availability in Grid5000, we cannot be certain
of its scalability at the moment, but we present here results up
to 529 processors.

Fig. 10 presents the measurement of the BT class B
benchmark with a varying number of processes distributed
over the grid. Each node used a local machine (among 4)
as its checkpoint server. The figure presents three results:
the completion time without checkpointing, the completion
time with a checkpoint wave every 60 s, and the number of
checkpoint waves for each run.

Although BT.B is not scalable on such a grid deployment,
we consider it a stress test for the fault tolerant protocol, since it
introduces complex communication schemes among all nodes.

The execution without checkpointing presents a slowdown
for 529 processes due to the heterogeneity of the grid and the
use of remote processors at this scale. This leads to a longer
execution time, in which the checkpointing execution has more
time to make up to 6 checkpoint waves. Since the completion
time is proportional to the number of checkpoint waves, this
increases the completion time of the execution with checkpoints
every 60 s.
Fig. 10. Impact of large scale on blocking checkpointing.

This is confirmed by the Fig. 9, which presents on its left
side the completion time and number of checkpoint waves
according to the time between checkpoints, and on its right side
the completion time as function of the number of checkpoint
waves for the BT class B with 400 processes benchmark.
The benchmark is run in similar conditions as the previous
experiment.

Even in grid deployments, the execution time is still linear
to the number of checkpoint waves. This number itself is
proportional to the frequency of checkpoints, that is the inverse
of the time between checkpoints.

6. Conclusion

In this paper, we present Pcl, a new implementation of a
blocking, coordinated checkpointing, and fault tolerant protocol
inside MPICH2. We evaluate its performance on three typical
high performance architectures: clusters of workstations, high
speed network clusters, and computational grids. We compare
its performance to that of Vcl, an implementation of a non-
blocking, coordinated checkpointing protocol.
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A blocking, coordinated checkpointing protocol requires
flushing communication channels before taking the state of a
process in order to ensure the coherence of the view built.
It introduces synchronization in the distributed system while
communications are frozen. However, since it does not require
copies of incoming or outgoing messages, it is simpler to
implement in an existing high-performance communication
driver.

A non-blocking, coordinated checkpointing protocol
consists of saving the state of the communication channels dur-
ing the checkpoint without interrupting the computation. It re-
quires logging in-transit messages and replaying them at restart,
which implies coordination with the progress engine and queue
mechanisms.

The experimental study demonstrated that for high-
speed networks, the blocking implementation gives the best
performance for sensible checkpoint frequencies. On clusters
of workstations and computational grids, the high cost of
network synchronization to produce the checkpointing wave of
the blocking protocol introduces a high overhead that does not
appear with the non-blocking implementation.

An experimental study on a cluster demonstrated that the
checkpoint frequency has a more significant impact on the
performance than the number of nodes involved in a checkpoint
synchronization for both non-blocking and blocking protocols.
We are conducting a larger study to evaluate this result on
computational grids. Evaluating the MTTF (mean time to
failure) of the system can significantly improve performances,
since the best value for the checkpoint wave frequency is close
to the MTTF, trying to make a checkpoint just before every
failure. Components detecting an increasing failure probability
(e.g. through their CPU temperature probe) should also trigger
a checkpoint wave.

The non-blocking protocol seems to provide good per-
formances for large scales, but suffers from implementation
issues. We plan to integrate this protocol in the MPICH2-
Nemesis framework in order to improve its performances and
evaluate it on high speed networks.
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